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LETTER TO THE EDITOR

Exact kink solutions in a new non-linear hyperbolic
double-well potential

A M Dikande and T C Kofane

Laboratoire de Mécanique, Faculté des Sciences, Université de Yaoundé, BP 812,
Yaoundé, Cameroun

Received 10 May 1991

Abstraet. We propose a model of a kink bearing Hamiltonian with a new non-linear potential
V{g, ) whose double-well shape can be varied continuously as a function of the parameter
g and which has the ¢* potential as a particular case. Exact classical kink solutions that
depend on u arc obtained. The rest masses and rest energies of the kinks are also determined.

In recent years non-linear monatomic chain models have been extensively used in
condensed-matter physics because they provide a non-perturbation approach tostrongly
anharmonic systems. The governing equations frequently admit large-amplitude
localized field profiles that are physically distinct from those obtainable by superposition
of small-amplitude or linearized profiles. These localized large-amplitude excitations
can propagate through the system without distortion of shape and are commonly referred
to as solitary waves. They exhibit remarkable stability and other particle-like properties.
Because of their localized nature, they have found widespread use as one-dimensional
models of extended particles in non-linear quantum-field theories, dislocations in
crystals, planar domain walls in ferromagnets and ferroelectrics, propagating flux quanta
in Josephson transmission lines, disgyration planes in superfiuid He, charge carriets in
weakly pinned charge-density-wave condensates, and charged dislocations in superionic
conductors, to mention only a few examples.

Various kinds of non-linear potential have been proposed to explain these pheno-
mena. As examples, we may retain the Toda potential (1967), the Lennard-Jones
potential, the Morse potential, the sine—Gordon and double sine~Gordon potentials,
the ¢*, p®and ¢* fields, a double quadratic potential, the Schmidt potential (1979), the
Magyari potential (1981), the Behera and Khare potential (1981} and the Remoissenet—
Peyrard potential (1981).

Consider a general class of non-linear solitary wave bearing one-dimensional lattice
Hamiltonians (see Currie et al 1980).

1C§
H=SA(ip} +350 @0 - 0 + 0}V (@) 0
where @, is a one-component dimensionless field defined on a one-dimensional lattice
of points with lattice constant . The first term represents the kinetic energy carried by

the field, the second represents harmonic coupling between field values at neighbouring
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lattice sites and the last term, V(g,), is the local non-linear potential function. The
constants Cg and wg are the characteristic velocity and frequency, respectively, whose
ratio, dy = Cyf/w, determines the fundamental length scale for variations in ¢;, while
the constant A sets the energy scale. In the displacive limit dy = Cp/w, > 1, where non-
linear kinks become well-defined (Currie et al 1977) elementary excitations with long
lifetimes, and as such behave very much like particles (Fogel et al 1976), the Hamiltonian
(1) is transformed approximatively to

H=A f 7 (392 + 1Ch? + 03V(9)) dx @)

which may be regarded as the energy functional of a classical scalar field ¢ = @(x, #)
having the Lagrange density

L= (A/2)p} - (AC}/2)9i — AwiV(p). ©)
The corresponding Euler-Lagrange equation
P = (1/CHgs — (1/dF) dV/dg = 0 (4)

is usually called the generalized Klein-Gordon equation of the displacement field ¢.
The non-linear solitary wave (kink, soliton) excitations, the periodic non-linear

wave (periodon) excitations and the linear ( phonon) excitations of the system arise as

travelling-wave solutions ¢ = ¢{5), 5 = x — vito (4), 1.e. as solutions to the equation

Pss =y di dV/de (%)
where
v=(1-0v2/C}1" and |v] < C,.
We look for a kink moving with velocity v and impose appropriate boundary conditions:
(dg(5)/dS)(§ = =) =0 @S = £=) =@y,

V{@(S = =) = 0 (a convenient energy zero). The kink solution is obtained from the
first integral of equation (5)

dep/dS = x[2(y?/d§)V (@)] (6)

by integrating a second time yvielding

5)
s=277 @D [ (V)" do. ™

7{0)

The relativistic dependence on v follows from the Lorentz covariant form of equation
4.

Our aim in this letter is to examine the possible non-linear excitations of a model
system with a new non-linear potential whose shape can be varied as a function of a
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Figure 1. Plot of parametric double-well one-site potential for different values of pz. The
double-well shape is preserved for any value of .

parameter . In this model, the anharmonic one-site potential is a double-well potential
of the form

Vg, 1) = (a/8)(sinh*(u)/u’ - 1)? u#0 (8)
with two degenerate minima (V = 0) at
@12 = F(1/u) sinh ™ (). (9)

Inour potential, the quantity @/8 is the barrier height. On figure 1, V (g, u) is plotted
as a function of ¢ for different values of u. The double-well form is preserved even for
large values of the parameter u. The small-values limit corresponds approximatively to
the well known ¢* field which is explained in the form

Vg, n—0) = (/8)(p? - 1)° (10)
from equations (7) and (8} using equation (9); we obtain the family of exact kink solutions
(S, #) = F(1/u) tanh " {(u/VT + p?) tanh[ VT + u7Va(y/2do)S]}. (11)

In the limit of § — *co, equation (11) gives
@(S = oo, p) = F(1/u) sinh ™' (12)

which are the values of @ corresponding to the degenerate minima,
‘The small-limit values of the parameter u gives approximatively

@(S) = F(1/V1 + u?) tanh[ V1 + u?Va(y/2d,)S] (13)

and ¢, , = T1, which correspond to the ¢* case.
Figure 2 shows the kink solution dependence of the parameter p. The kink form is
preserved and only the wave amplitude is varied as a function of u.
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We now turn our attention to the particle properties of the kink moving with velocity
v {{v] < Cy). Its energy is uniquely determined and can be expressed in the relativistic
form (Currie et al 1980)

E®) = yE® (14)

where E® = M, C} is the rest energy of the kink and M, is its rest mass:
V2A (92
My = d—of (V(g, )" de. (15)
¢

Substituting the expression (8) for V{g, u) in equation (15) and integrating, we
obtain

My = (AVa/2d)(1/p*)uV1+p? =T+ 2u)sinh™ul.  (16)

In summary, we have introduced a potential that has the advantage that its shape
can be varied continuously leading simply to a change of the associated kink wave form.
An appropriate choice of the parameter u enables us to employ a form of the potential
that is closer to the situation in a particular physical system. Moreover, our model admits
the @* potential as a particular case for small values of u. The dipolar character and
bi-stability of the hydrogen bond can be conveniently described in our model when
discussing high protonic mobility in filamentary crystals, or non-linear collective pheno-
mena in biological macromolecules, in ice, or the transport of energy across biological
cellular membrane. Finally, the statistical mechanics of this mode] are left for treatment
in future work.
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