
Exact kink solutions in a new non-linear hyperbolic double-well potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 5203

(http://iopscience.iop.org/0953-8984/3/27/014)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 11/05/2010 at 12:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/27
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys.: Condens. Matter 3 (1991) 5203-5206. Printed in the LIK 

LETTER TO THE EDITOR 

Exact kink solutions in a new non-linear hyperbolic 
double-well potential 

A M  Dikande and T C Kofane 
Laboratoire de h16canique. Faculte des Sciences, Univcrsite de Yaounde, BP 812, 
Yaounde, Cameroun 

Received 10 May 1991 

Abstract. We propose amodel of a kink bearing Hamiltonianwith a new non-linear potential 
V ( q ,  p )  whose double-well shape can be vaned continuously as a function of the parameter 
p and which has the q 4  potential as a particular case. Exact classical kink solutions that 
dependonp areobtained. The rest masses and restenergiesof the kinksare also determined, 

In recent years non-linear monatomic chain models have been extensively used in 
condensed-matter physics because they provide a non-perturbation approach to strongly 
anharmonic systems. The governing equations frequently admit large-amplitude 
localized field profiles that are physically distinct from those obtainable by superposition 
of small-amplitude or linearized profiles. These localized large-amplitude excitations 
canpropagate through thesystem without distortionofshaFeandarecommonly referred 
to as solitary waves. They exhibit remarkable stability and other particle-like properties. 
Because of their localized nature, they have found widespread use as one-dimensional 
models of extended particles in non-linear quantum-field theories, dislocations in 
crystals, planar domain walls in ferromagnets and ferroelectrics, propagatingflux quanta 
in Josephson transmission lines, disgyration planes in superfluid He, charge carriers in 
weakly pinned charge-density-wavecondensates, and charged dislocations in superionic 
conductors, to mention only a few examples. 

Various kinds of non-linear potential have been proposed to explain these pheno- 
mena. As examples, we may retain the Toda potential (1967), the Lennard-Jones 
potential, the Morse potential, the sineGordon and double sine-Gordon potentials, 
the q4, @and @fields, adouble quadratic potential, the Schmidt potential (1979), the 
Magyari potential (1981), the Behera and Khare potential (1981) and the Remoissenet- 
Peyrardpotential(l981). 

Consider a general class of non-linear solitary wave bearing one-dimensional lattice 
Hamiltonians (see Currie er al1980). 

where pi is a one-component dimensionless field defined on a one-dimensional lattice 
of points with lattice constant 1. The first term represents the kinetic energy carried by 
the field, the second represents harmonic coupling between field values at neighbouring 
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lattice sites and the last term, V(qi), is the local non-linear potential function. The 
constants CO and wo are the characteristic velocity and frequency, respectively, whose 
ratio, do = Co/wo, determines the fundamental length scale for variations in pi, while 
the constant A sets the energy scale. In the displacive limit do = Co/wo 9 1, where non- 
linear kinks become well-defined (Currie et a1 1977) elementary excitations with long 
lifetimes, andassuch bebaveverymuchlikeparticles(Fogelefa11976), theHamiltonian 
(1) is transformed approximatively to 

which may be regarded as the energy functional of a classical scalar field q = q ( x ,  I )  
having the Lagrange density 

L = ( A / 2 ) q :  - (AC&’Z)p: - AW?,V(q) .  (3) 

The corresponding Euler-Lagrange equation 

v x x  - ( W ? , ) q r  - (I/&) dV/dP: = 0 (4) 

is  usually called the generalized Klein-Gordon equation of the displacement field q. 
The non-linear solitary wave (kink, soliton) excitations, the periodic non-linear 

wave (periodon) excitations and the linear (phonon) excitations of the system arise as 
travelling-wave solutions ‘p = ‘p(S) ,  S = x - uz to (4), i.e. as solutions to the equation 

qSs = y2 di  dV/dpl (5) 

where 

y =  (1  - uz/c;)-ll* and I U /  Q Co. 

We look for a kink moving with velocity U and impose appropriate boundary conditions: 

(dq(S)/dS)(S = +.m) = 0 q ( S  = +-) = ql,2 

V(p.(S = %m)) = 0 (a convenient energy zero). The kink solution isobtained from the 
first integral of equation (5) 

dq/d.S = +[2(yZ/d~)V(‘p)]’n (6) 

by integrating a second time yielding 

The relativistic dependence on U follows from the Lorentz covariant form of equation 
(4). 
. . I  

Our aim in this letter is to examine the possible non-linear excitations of a model 
system with a new non-linear potential whose shape can be vaned as a function of a 
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Figure 1. Plot of parametric double-well one-site potential for different values of .u. The 
double-well shape is preserved for any value of W .  

parameter p. In this model, the anharmonicone-site potential is a double-well potential 
of the form 

v(v29) = ( d W n h ’ ( w ) / v *  - 1)’ P f O  (8) 

with two degenerate minima (V = 0) at 

q1,* = ~ ( I / p ) ~ i n h - ~ ( p ) .  (9) 

Inourpotential,thequantitya/Sisthe barrierheight. Onfigure 1, V ( q ,  p)ispIotted 
as a function of q for different values of p.  The double-well form is preserved even for 
large values of the parameter p. The small-values limit corresponds approximatively to 
the well known q4 field which is explained in the form 

V(q,IL+O) = (a/s)(PZ - 1)2 (10) 

fromequations(7) and(8) usingequation(9);weobtain thefamilyofexact kinksolutions 

q(S,  p) = ~ ( l / p )  tanh-’{(p/-) t a n h [ m 6 [ y / 2 d , , ) S ] } .  (11) 

In the limit of S-+ +CO, equation (11) gives 

q ( S  = -Cm, F) = 3(1/p) sinh-I p 

which are the values of q corresponding to the degenerate minima. 
The small-limit values of the parameter p gives approximatively 

q(S) = T ( l / m )  t a n h [ m G ( y , ’ 2 d o ) S J  

and q1,2 = 71, which correspond to the q4case. 

preserved and only the wave amplitude is varied as a function of p, 
Figure 2 shows the kink solution dependence of the parameter p .  The kink form is 
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Y (  x - v t )  
values of p. The anti-kink is obtained by 
reflection through the horizontal axis, 

We now turn our attention to the particle properties of the kink moving with velocity 
U (I U I  Q CO).  Its energy is uniquely determined and can be expressed in the relativistic 
form (Currie etaf 1980) 

y E (O) (14) E(") = 

where E(o' = MkCi is the rest energy of the kink and Mk is its rest mass: 

Substituting the expression (8) for V ( v ,  p )  in equation (15) and integrating, we 

Mk = ( ~ G / ~ ~ ) ( i / p 3 ) [ p d i T i ?  -~ (Y+ 2p2)  sinh-lp]. (16)~ 
In summary, we have introduced a potential that has the advantage that its shape 

can be varied continuously leading simply to a change of the associated kink wave form. 
An appropriate choice of the parameter p enables us to employ a form of the potential 
that iscloser tothesituation in aparticularphysicalsystem. Moreover,ourmodel admits 
the 'p4 potential as a particular case for small values of p. The dipolar character and 
bi-stability of the hydrogen bond can be conveniently described in our model when 
discussing high protonic mobility in filamentary crystals, or non-linear collective pheno- 
mena in biological macromolecules, in ice, or the transport of energy across biological 
cellular membrane. Finally, thestatistical mechanicsof thismodel are left for treatment 
in future work. 

obtain 
~~~ ~~~~ ~ ~~ ~ ~~ 
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